A model competition approach to determining factors related to interrogation decisions

Emily N. Line Quantitative Psychology Brownbag Spring 2025

SIMON FRASER UNIVERSITY

THOMPSON RIVERS UNIVERSITY

National Science Foundation

Collaborators

Madison Harvey

Heather Price

Dan Cavagnaro

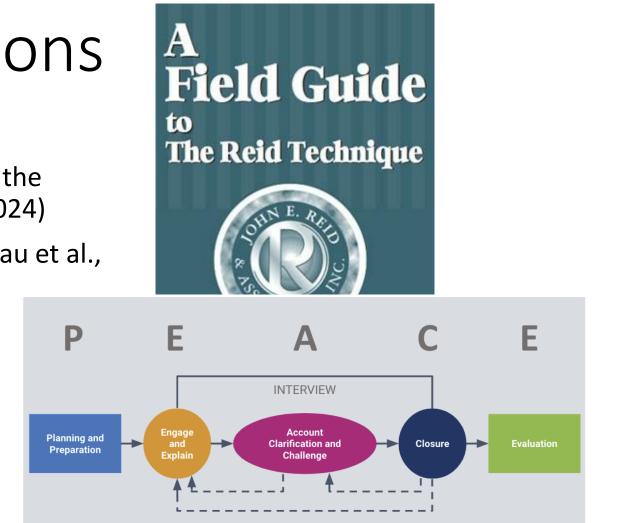
Mike Regenwetter

Summer School 2022

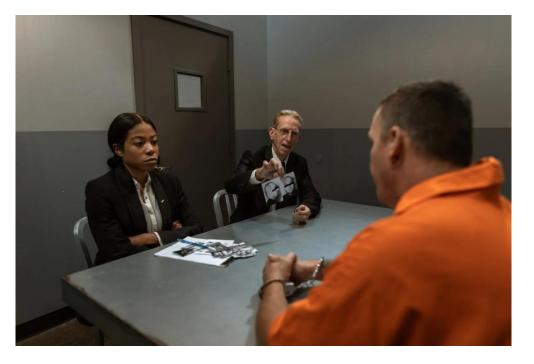
Suspect Interrogation

- Suspect interrogations are an important part of the investigative process
 - Corroborate evidence
 - Assess suspect's behavior
 - Can significantly impact direction of investigation

	X
Created by Creative Mahira from Noun Project	

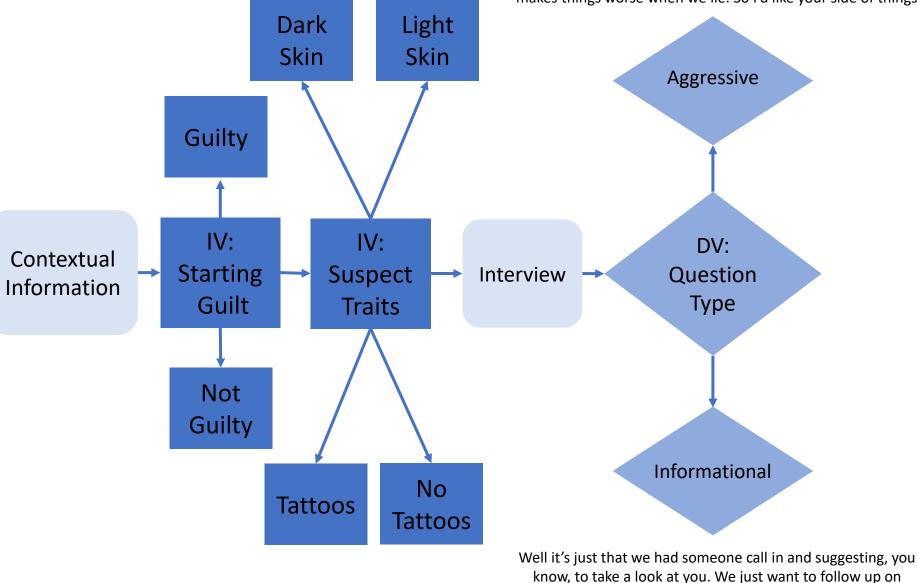

Interrogation Misconduct

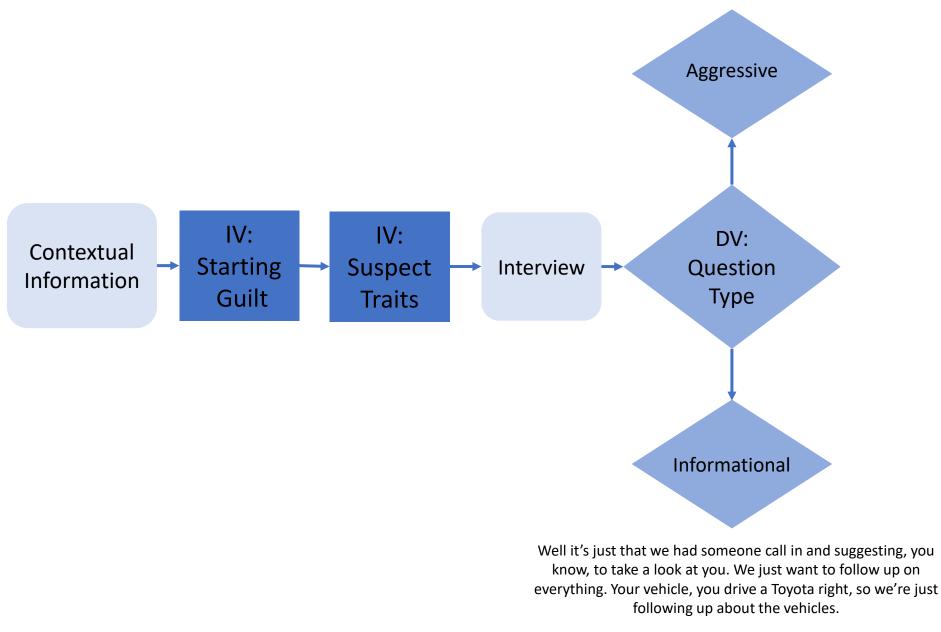
- Interrogations can go wrong
- Amanda Knox
 - Falsely accused of murdering her roommate while abroad in Italy
 - Falsely confessed after a long, intense interrogation with aggressive police questioning
- 28% of wrongful exonerations involved false convictions (Innocence Project, 2025)
 - Average of 16 hours
 - Often no legal counsel present
 - Can involve police deception

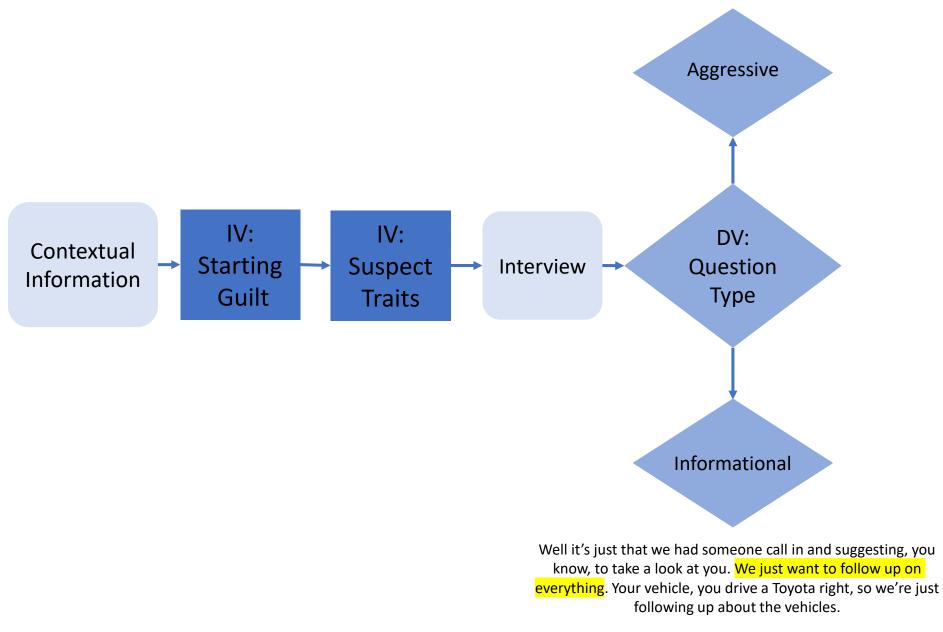

Interrogation Decisions

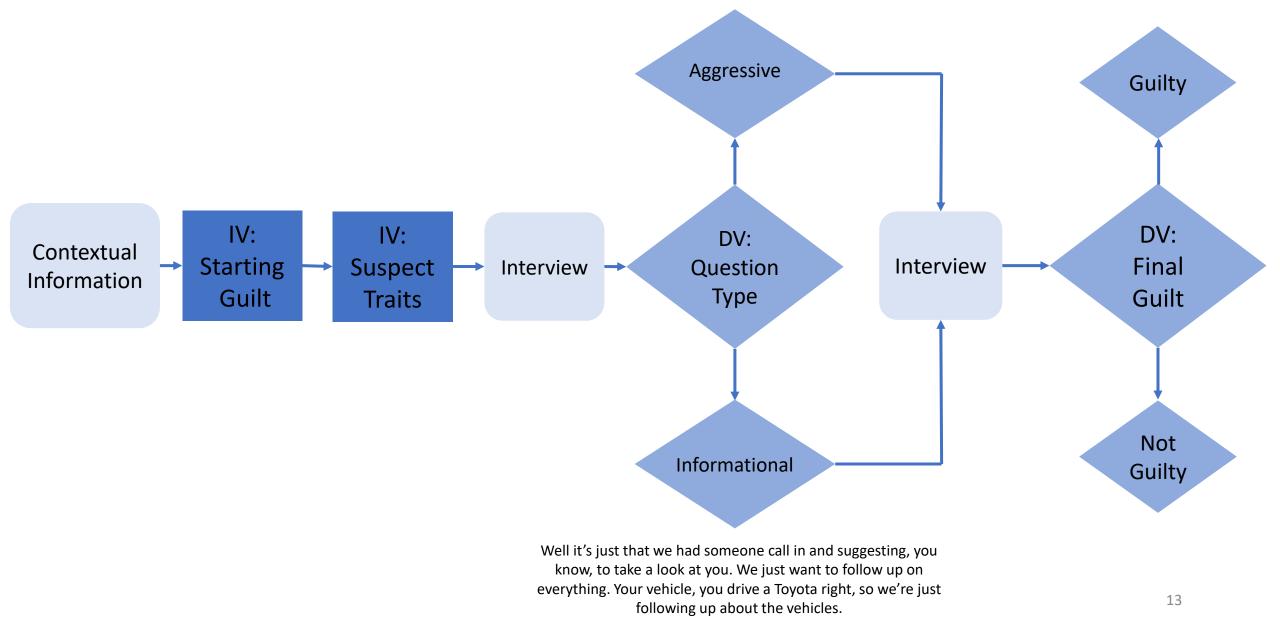
- Interrogator's decisions and approach affects the likelihood of false confessions (Catlin et al., 2024)
- Accusatorial questioning (Reid technique; Inbau et al., 2013)
 - Start with presumption of guilt
 - Aim is to get suspect to confess
- Information-gathering approach
 - (PEACE technique; Bull & Rachlew, 2020)
 - Aim is to get credible information

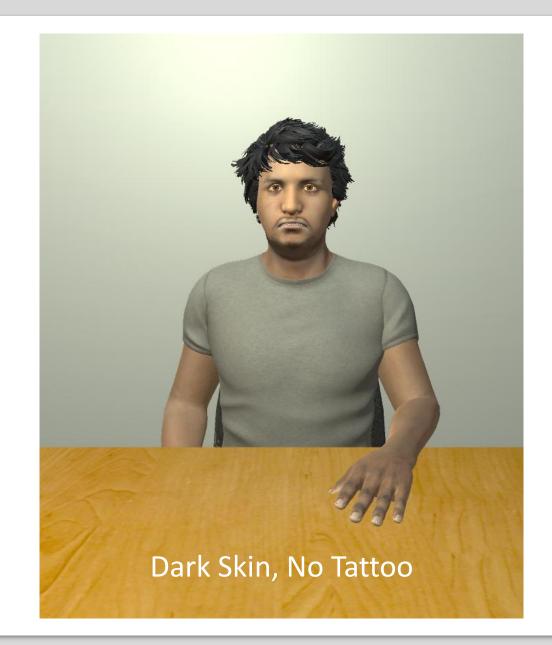

Factors affecting interrogation decisions

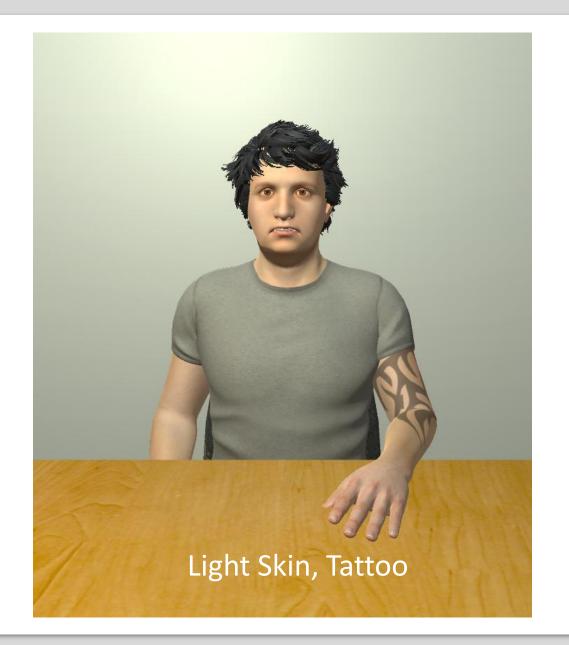

- Presumption of guilt
 - Confirmation bias in seeking out evidence (O'Brien, 2009)
 - Asking more guilt-presumptive questions (Hill et al., 2010)
- Presence of tattoos (Brown et al., 2018)
 - More likely to be perceived as guilty
- Race
 - Mixed findings

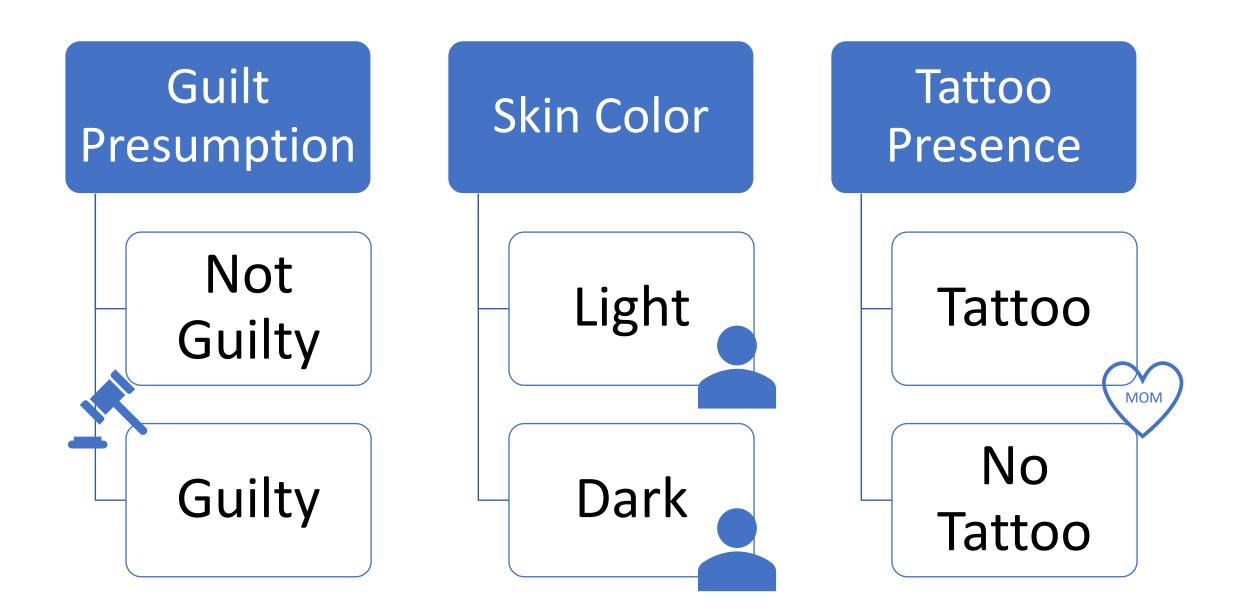

Race effects in legal contexts

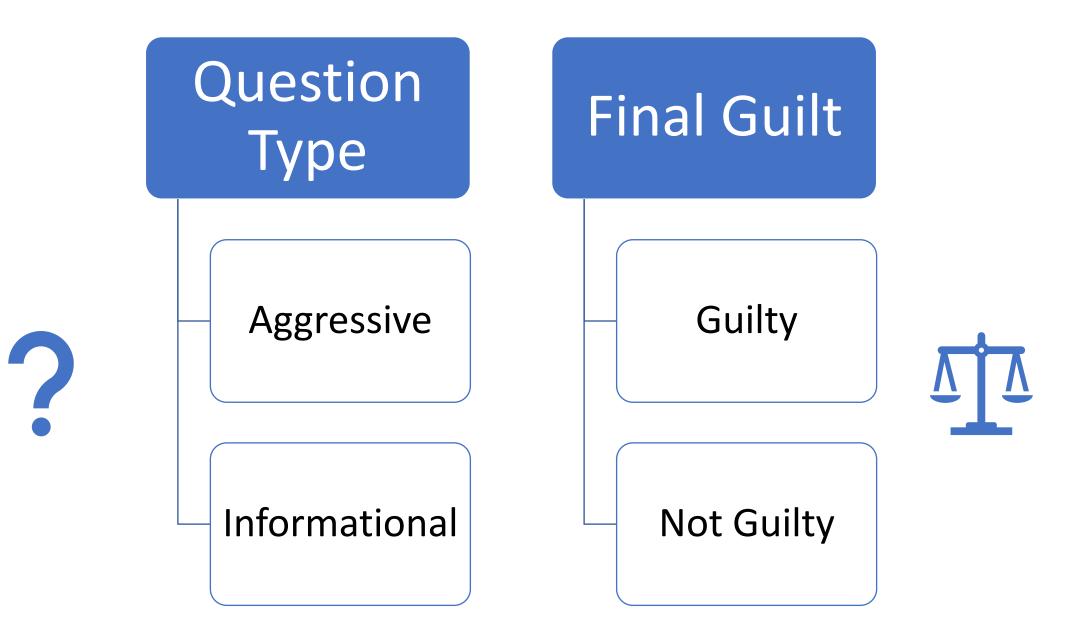

- Conflicting findings in psychology and law regarding racial biases
 - Some studies find that (mock) jurors rate BIPOC individuals as less credible, and more likely to be guilty (Mitchell et al., 2005)
 - Other studies find the opposite effects (Estrada-Reynolds et al., 2022)
 - "Overcompensation" or "Reverse-race effect"
- Possibility of two sub-populations
 - Difficult to test using off-the-shelf statistical approaches






know, to take a look at you. We just want to follow up on everything. Your vehicle, you drive a Toyota right, so we're just following up about the vehicles.





Model Space

- Eight groups:
 - Guilt Presumption (Not guilty/Guilty) x Skin Color (Light/Dark) x Tattoo Presence (Yes/No)
- Consider the probability of
 - Asking aggressive question
 - Giving a final judgment of guilty
- Translates to a 16-dimensional space

		Probability of Behavior					
		Guilty Pre Innocent Pre					
		Dark	Light	Dark	Light		
	Tattoos	P_{DGT}	P_{LGT}	P_{DIT}	P_{LIT}		
]	No Tattoos	P_{DGN}	P_{LGN}	P_{DIN}	P_{LIN}		

Order-constrained inference

- Translate verbal hypotheses into mathematical order constraints
 - Comparing probabilities or sets of probabilities
- E.g., "Mock interrogators who view a suspect with dark skin are more likely to believe the suspect is guilty than interrogators who view a suspect with light skin."

 $0 \leq P_L \leq P_D \leq 1$

- Can use model competition to compare a set of competing hypotheses
 - Are people biased against suspects with dark skin, against suspects with light skin, or are there two sub-populations?

Hypotheses

- 22 hypotheses that consider possible effects of initial guilt presumption, tattoo presence, and race
- 6 mixture models that consider two subpopulations

General predictions across hypotheses

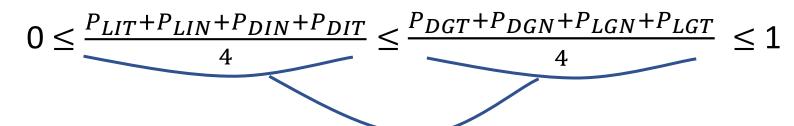
- People are more likely to ask aggressive questions/conclude guilt with suspects with dark skin compared to suspects with light skin
- People are more likely to ask aggressive questions/conclude guilt with suspects with light skin compared to suspects with dark skin
- Respondents are more likely to ask aggressive questions to suspects with tattoos than they are to suspects without tattoos
- Respondents who had a presumption of guilt will be more likely to ask aggressive questions than respondents with a presumption of not guilty

(bias against dark) Skin Color (bias against light)

Skin Color

Tattoos

Presumed


Guilty

Additional variations between models

- Weighting of factors
 - E.g., Skin color > Presumption > Tattoos (*Hyp. 5 and 6*)
- Interactions
 - E.g., "Effect of skin color will be greater when participants have a presumption of guilt compared to a presumption of innocence" (*Hyp. 17 and 18*)
- Averaging vs. Overall "main effects"
 - E.g., $\{P_{LIT} + P_{LIN} + P_{DIN} + P_{DIT}\} \le \{P_{DGT} + P_{DGN} + P_{LGN} + P_{LGT}\}$ (Hyp. 15)
 - V.s. $\{P_{LIT}, P_{LIN}, P_{DIN}, P_{DIT}\} \le \{P_{DGT}, P_{DGN}, P_{LGN}, P_{LGT}\}$ (Hyp. 16)

Two example variations

Hyp 15: On average, participants are more likely to view a suspect as guilty when they had a pre-interrogation presumption of guilt:

Hyp 16: Each group that presumed guilty will result in more guilty ratings than each group that presumed innocent:

 $0 \leq \{P_{LIT}, P_{LIN}, P_{DIN}, P_{DIT}\} \leq \{P_{DGT}, P_{DGN}, P_{LGN}, P_{LGT}\} \leq 1$

Mixture Models

- Mixed findings regarding racial effects on legal judgments
- Could be indicative of two sub-populations:
 - One that exhibits biases against people of color
 - One that exhibits biases against white people (reverse-race effect)
- A mixture model allows for two sub-populations in the data
- Consider 6 models that would allow for these two potential sub-populations

)				
	Π						

The first 22 Hypotheses

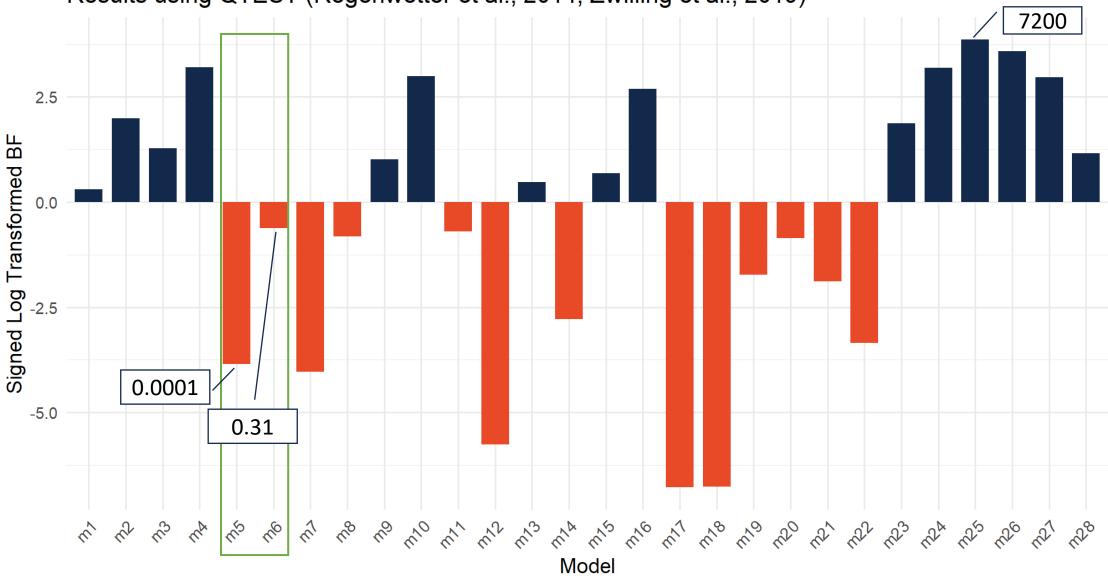
Hypothesis	Skin Color (SC)	Tattoo (T)	Presumption (P)	Additional Components	Hypothesis	Skin Color (SC)	Tattoo (T)	Presumption (P)	Additional Components
1/2	D/L	\checkmark	\checkmark	None	17/18	D/L	Х	\checkmark	Interaction
3/4	D/L	\checkmark	\checkmark	P > SC > T					(Larger SC effect when P = guilty)
5/6	D/L	\checkmark	\checkmark	SC > P > T	19	D	\checkmark	X	Interaction
7/8	D/L	X	\checkmark	None					(T effect when
9/10	D/L	X	\checkmark	P > SC					SC = Dark)
11/13	D/L	X	x	Average	20	D	\checkmark	X	Interaction (Larger T effect
12/14	D/L	X	Х	Overall					when SC = Dark)
15	Х	X	\checkmark	Average	21	D	\checkmark	\checkmark	Interactions
16	X	X	\checkmark	Overall	22	D	\checkmark	\checkmark	Interactions

The first 22 Hypotheses

Hypothesis	Skin Color (SC)	Tattoo (T)	Presumption (P)	Additional Components	Hypothesis	Skin Color (SC)	Tattoo (T)	Presumption (P)	Additional Components
23 1/2	D/L	\checkmark	\checkmark	None	28 17/18	D/L	X	\checkmark	Interaction
24 3/4	D/L	\checkmark	\checkmark	P > SC > T					(Larger SC effect when P = guilty)
25 5/6	D/L	\checkmark	\checkmark	SC > P > T	19	D	\checkmark	x	Interaction
26 7/8	D/L	X	\checkmark	None	_				(T effect when
27 9/10	D/L	X	\checkmark	P > SC					SC = Dark)
11/13	D/L	X	x	Average	20	D	\checkmark	X	Interaction (Larger T effect
12/14	D/L	X	Х	Overall					when SC = Dark)
15	Х	X	\checkmark	Average	21	D	\checkmark	\checkmark	Interactions
16	X	X	\checkmark	Overall	22	D	\checkmark	\checkmark	Interactions


Model Parsimony

- Volume of model as a measure of model parsimony
- Maximum possible Bayes Factor (BF) against the unconstrained model is equal to $\frac{1}{volume}$


Model Parsimony			Model Parsimony				
Hypothesis	Volume	Max Possible BF	Hypothesis	Volume	Max Possible BF		
1	0.000001	1,000,000	15	0.25	4		
2	0.000001	1,000,000	16	0.00020	4890		
3	< 0.000000016	62,500,000	17	0.0080	125		
4	< 0.000000016	62,500,000	18	0.0080	125		
5	< 0.000000016	62,500,000	19	0.028	36		
6	< 0.000000016	62,500,000	20	0.0076	132		
7	0.0000016	6,250,000	21	0.0018	567		
8	0.0000016	6,250,000	22	0.0070	142		
9	0.0000009	11,111,111	23 (Mix 1 and 2)	0.000044	22,957		
10	0.0000009	11,111,111	24 (Mix 3 and 4)	0.0000025	4,000,000		
11	0.25	4	25 (Mix 5 and 6)	0.0000016	6,250,000		
12	0.00020	5102	26 (Mix 7 and 8)	0.000045	22,277		
13	0.25	4	27 (Mix 9 and 10)	0.00014	7062		
14	0.00021	4691	28 (Mix 17 and 18)	0.72	1.38		

Model Analyses

- First obtained Bayesian p-value as goodness-of-fit statistic
 - All models were a good fit (p > .05)
- Then obtained Bayes factor for each model
 - Evidence for Hypothesized Model
 - Evidence for Baseline Model
 - BF < 1 shows evidence against hypothesized model
 - BF > 1 shows evidence in support of hypothesized model

Results using QTEST (Regenwetter et al., 2014; Zwilling et al., 2019)

Results using QTEST (Regenwetter et al., 2014; Zwilling et al., 2019)

Mixture model – Hypotheses 5 and 6

Hypothesis 5 (6)

- Mock interrogators more likely to rate suspects with dark (light) skin as guilty compared to suspects with light (dark) skin
- Mock interrogators more likely to rate suspects with tattoos (vs. no tattoos) as guilty
- Mock interrogators with a presumption of guilt are more likely to rate suspects as guilty than interrogators with a presumption of innocence
- Skin color weighted more heavily than presumption of guilt/innocence, weighted more heavily than tattoos

Hyp 5
$$P_{LIN} \leq P_{LIT} \leq P_{LGN} \leq P_{LGT} \leq P_{DIN} \leq P_{DIT} \leq P_{DGN} \leq P_{DGT}$$

Hyp 6 $P_{DIN} \le P_{DIT} \le P_{DGN} \le P_{DGT} \le P_{LIN} \le P_{LIT} \le P_{LGN} \le P_{LGT}$

Interrogation Decisions

- Evidence that there are two sub-populations regarding racial biases exhibited by participants
- Interrogators who presume the suspect is guilty are more likely to ask aggressive questions and judge suspect as guilty
 - "innocent until proven guilty"
- Physical characteristics beyond skin color also affect interrogators' judgments
- Future research should investigate interventions or standardized methods of interrogation

Modeling Approach Conclusion

- Very precise, nuanced predictions using order constraints
- The conflicting race results in psychology and law research could be due to the presence of two sub-populations
- Assess possibility of sub-populations vs. homogeneous populations using model competition
- Novel contribution to the field of psychology and law

Thank you!

33

Signed log transformation

$$\label{eq:Transformed BF} \text{Transformed BF} = \begin{cases} -\log_{10}(1+1/BF), & \text{if } BF \leq 1\\ \log_{10}(1+BF), & \text{if } BF > 1 \end{cases}$$