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Melanoma

Image from Dermascopopedia.org

• Skin cancer is a large and growing health concern
• Nearly 1 person in 28 are diagnosed in their lifetime
• Both the rate of diagnosis and the number of deaths have increased
• Early detection has a large effect on survival rates

Houpt (UTSA) Human and AI Melanoma Detection 4 39



First Detection

• A number of algorithms have been suggested for classifying skin
lesions

ABCD
Menzies Method
Pattern Analysis
…

• Each of these heuristics rely primarily on visual classification of
various aspects of a (single) lesion

• Designed for front-line practitioners
Emphasize objective, describable features.
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Expert Skin Lesion Assessment

Image from parraskincancer.com.au

• Dermatologists rely on perceptual expertise for categorizing skin
lesions (Norman, et al., 1989; Gachon, et al., 2005)

• Significant weight given to context
Age, family history, sun exposure
Patient’s other skin lesions; ugly duckling
Differences over time (ABCDE)
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Technological Solutions
(Goodson, A. G., & Grossman, D. 2009)

• Enhanced sensors
Dermatoscopy
Laser
Multispectral
Optical Coherence Tomography
Ultrasound

• Computer based assessment
Support vector machine
Neural net implmentation of ABCD
Deep neural net
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The International Skin Imaging Collaboration
Melanoma Project

https://isdis.org/isic-project/

Goal: “support efforts to reduce melanoma-related deaths and unnecessary biopsies by improving
the accuracy and efficiency of melanoma early detection”
• Imaging and assessment standards
• Archive of validated images
• Computer vision annual challenge (since 2016)

Lesion boundary segmentation
Attribute detection
Diagnosis
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Deep learning

• Deep convolutional neural networks have been
successfully applied in a wide range of visually
dominated tasks, including skin lesion classification

• Assess image content by repeated apply filters of
different sizes

• E.g., Cui et al. (2019) ≈ 95% sensitivity and
specificity discriminating melanoma and benign nevi

Images from: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
Bisla, et al. (2019)
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Limitations of Deep CNNs

Image from: Szegedy, et al. (2014)

• Generally require large amounts of training data (although networks that are pre-trained on
more general imagery can be leveraged)

• Black box: Difficult to ascertain how a classification is made (unknown biases)
• Brittle: Small changes can dramatically affect performance
• Generally does not do well with unexpected classes (ugly ducklings)
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Melanoma Identification
Rules-Based Heuristics

ABCD criteria

TDS=βAA+βBB+βCC+βDD

Asymmetry Border regularity Colour variance Diameter
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Task
Easier Trial

Which lesion has the more irregular border?
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Task
Harder Trial

Which lesion has the more irregular border?
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Bradley-Terry-Luce Model

Which lesion has the more irregular border?

The estimated probability that image i is selected over image j is given by:

P (i > j) =
πi

πi + πj

where πk is a strength parameter that represents the relative perceptual strength of image k along
the prompted dimension.
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Measures

Stimuli: 10, 000 images (ISIC archive)

Human Perception
• 40, 500 pairwise comparisons per feature

(A, B, C)
• Perceptual “strength” scores derived via

BTL model.

Computer Vision
• Asymmetry:

Overlap ratio
• Border irregularity:

Compactness factor P 2

4πA

• Colour variance:
RMSERGB
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Results
BTL Face Validity
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Results
Computer Vision × BTL Correlation
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SVM Categorisation
Malignancy Discrimination
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SVM Analysis
Feature Contribution

BTL
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Conclusions

• It is clear that people on the whole are picking up on different information than the computer
vision systems

Even novices are not just inefficient approximations to computer vision
• Rich dataset on how people interpret rule-based instructions about configural features of

skin-lesion perception
• These are complicated features that are many not be best represented as unidimensional and

orthogonal
• Experts are probably seeing lesions differently as well
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Combining Features
Protocol

• Question: Are features processed independently?
• Aim: Test perceptual processing independence of shape symmetry, border regularity, and

colour variance.
• Task: 2x2 double factorial paradigm
• Analysis:

General recognition theory (multivariate signal detection).
▶ perceptual separability
▶ perceptual independence
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Experiment II
Task: 2× 2 Factorial Design
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Task
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GRT Model Interpretation
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Results
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Results
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Summary and Conclusions

• Conclusions
1. Novice observers are not separating information when making judgements
2. Perceptual judgements of skin lesions tend to be made along a general ‘ugliness’ dimension,

rather than distinct features.
3. Some participants exhibit only violations of perceptual separability between color and shape

• Next steps
1. Experts make holistic judgements, but surely not like this.
2. How does training perceptual expertise influence individual and combined feature perception?
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The problem

• The problem
The ABCD heuristic and other rely on skin lesion features which can easily be given a semantic
label.
Dermatologists have difficulty verbalizing what features they use.

• Proposed solution
Extract features from a deep-net classifier.
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New Features from Computer Vision
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New Features from Computer Vision
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Design

• 14 Training days
• Test on yes/no categorization of melanoma on Day 1 (pre-training), 8, and 14 (post-training)
• Between subjects

Training type: ABC Features, CV Features, Holistic
• Within subjects

Training Sessions
• Currently have 1 complete subject with CV features, 1 complete (but with data stuck on a

desktop in Texas) with ABC features, and 1 incomplete with holistic training
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Regimen
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Some Results
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Some GRT Results
CV Based training
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Preliminary Conclusions

• While we do see improvement in feature discriminability, there is not an indication improved
performance.

• While we do see improvement in feature discriminability, there is not an indication improved
performance.

No clear improvement in actually discriminating melanoma from non-melanoma.
Training does not seem to lead to more independence nor separability
Next steps

▶ Potential additional image dimensions: variation on the neural network architecture; those based
on expert performance.

▶ Direct training on melanoma discrimination task.
▶ Automated aid indicating feature values and/or diagnostic recommendation.
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Thank you!
Questions?

Lab
• Sarah Sinclair-Amend (Wright State)
• Bryanna Scheuler
• Ying-Yu Chen
• Erin Silvas
• Serena Deshazo
• Jocelyn Espinoza
• Erik Skogsberg-De la O
• Lauren Kahn

Melanoma Perception Collaborators
• Jim Townsend (Indiana University)
• Michael Wenger (University of Oklahoma)
• Lawrence Mark (IU Health)
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