

Wirtschafts- und Sozialwissenschaftlichen Fakultät Methodenzentrum

Toward a unified perspective on assessment models

Noventa Stefano Methods Center, Universität Tübingen Heller Jürgen Faculty of Psychology, Universität Tübingen Kelava Augustin Methods Center, Universität Tübingen

> UIUC Quant Brownbag 02.10.2024

Outline

Introduction

2 Primitives

2 Operations

Results: Taxonomy

Conclusions

Appendix

2 Primitives

2 Operations

Results: Taxonomy

Conclusions

Appendix

3 | Noventa, Heller & Kelava

- For details see, Noventa, S., Heller, J., Kelava, A. (2024). Toward a unified perspective on assessment models, part I: foundation of a framework. *Journal of Mathematical Psychology*, 122, 102872.
- Part II (dichotomous variables) and Part III (polytomous and continuous variables) are still under review
- Theories of assessment have different traditions in Psychometrics and Mathematical Psychology with related yet different scopes and aims.
- 1. Item Response Theory (IRT)
 - a) parametric and non-parametric (NIRT)
 - b) uni- and multi-dimensional (MIRT)
- 2. Cognitive Diagnostic Models (CDMs) or Assessment (CDA)
 - a) 'early' CDA approaches, single models
 - b) 'modern' CDA approaches, general models and frameworks
- 3. Knowledge Space/Structure Theory (KST)
 - a) knowledge/performance-based approach
 - b) competence-based approach (CbKST)
 - These traditions have generated a plethora of models.

Acronym	Definition	Acronym	Definition
KST	Knowledge Space/structure Theory	IRT	(parametric) Item Response Theory
BLIM	Basic Local Independence Model	<i>n</i> PL	n-Parameters Logistic
CBLIM	Competence based BLIM	<i>n</i> PNO	n-Parameters Normal Ogive
LKS	Logistic Knowledge Structure	1PL-AG	1PL- Ability-based Guessing
SLM	Simple Learning Model	2PLE	2-Parameters Logistic Extension
CDA	Cognitive Diagnostic Assessment	ARRG	Ability Removing Random Guessing
DINO	Deterministic Input Noisy OR-gate	LLTM	Linear Logistic Test Model
RDINO	Reparametrized DINO	GRM	Graded Response Model
DINA	Deterministic DINA	BNM	Bock's Nominal Model
RDINA	Reparametrized DINA	RSM	Rating Scale Model
HO-DINA	Higher-Order DINA	PCM	Partial Credit Model
MS-DINA	Multiple Strategy-DINA	GPCM	Generalized PCM
GDINA	Generalized DINA	CRMs	Continuation Ratio Models
MCLCM-C	Multiple Classification Latent	MM-IRT	Mixture-Measurement IRT
	Class Model - Conjunctive	MRM	Mixed Rasch Model
MCLCM-D	Multiple Classification Latent	NIRT	Non-parametric IRT
	Class Model - Disjunctive	MHM	Monotonic Homogeneity Model
NIDO	Noisy Input Deterministic-Or-gate	DMM	Double Monotonicity Model
NIDA	Noisy Input Deterministic AND-gate	MIRT	Multidimensional IRT
RUM	Re-parametrized Unified Model	M <i>n</i> PL	Multidimensional <i>n</i> PL
NC-RUM	Non-Compensatory RUM	MGRM	Multidimensional GRM
C-RUM	Compensatory RUM	MPCM	Multidimensional PCM
R-RUM	Reduced RUM	MGPCM	Multidimensional GPCM
LLM	Linear Logistic Model	M2PL-AIG	Multidimensional 2PL
ACDM	Additive-Cognitive Diagnostic Model		Ability-based Item Guessing
GDM	General Diagnostic Model	GPMNM	General-Purpose Multidimensional NM
MGDM	Mixture distribution GDM	MLTM	Multicomponent Latent Trait Model
ECDM	Explanatory Cognitive Diagnostic Model	MLTM-D	MLTM for Diagnostic
LCDM	Log-linear Cognitive Diagnostic Model	GLTM	General component Latent Trait Model
PINC	Probabilistic Input, Noisy Conjunctive	MNO	Multidimensional Normal-Ogive
HO-PINC	Higher-Order PINC	M3NO	Multidimensional 3-parameters NO

Similarities and connections have been highlighted, especially with Latent Class Analysis (LCA). Some examples

- a) betw. IRT and LCA (Formann, 1982, 1985)
- b) betw. CDA and LCA (Maris, 1999)
- c) betw. CDA and IRT (Junker & Sijtsma, 2001)
- d) betw. KST and LCA (Schrepp, 2005; Ünlü, 2006, 2011)
- e) betw. KST and Mokken's NIRT model (Ünlü, 2007)
- f) betw. KST and IRT (Stefanutti, 2006; Noventa et al., 2019)
- g) betw. KST and Bayesian networks (Burigana, 2024)
- h) betw. CbKST and CDA (Heller et al., 2015)

Can we identify a set of common primitives and operations that allows to systematize and derive these models?

A sequential hypothesis

By borrowing a terminology used by Hutchinson (1991), it appears that many models can be systematized by considering two sequential 'processes', an ability-based one (*p*-process) and a random-chance-based one (*g*-process).

Item Response Theory

Local Independence is typically assumed: $P(X = x|\theta) = \prod_i P(X_i = x_i|\theta)$

Cognitive Diagnostic Models/Assessment

- Whereas IRT considers continuous latent traits, CDMs profile individuals by latent classes $C \in 2^S$, with S a set of dichotomous skills/attributes
- The relation between items and skills is captured by a **Q**-matrix. For instance, given $Q = \{a, b, c\}$ and $S = \{s_1, s_2, s_3\}$

Q	S 1	S 2	S 3
а	1		
b		1	
С	1		1

- The Core CDM is a latent class model of the form

$$P(X = x) = \sum_{C \in 2^{\mathcal{S}}} \nu(C) P(X = x | C, \mathbf{Q}) = \sum_{C \in 2^{\mathcal{S}}} \nu(C) \prod_{i} P(X_i = x_i | C, \mathbf{Q}_i)$$

where $\nu(C)$ is the membership of the latent class *C* and $P(X_i = x_i | C, \mathbf{Q}_i)$ is the probability of a response $X_i = x_i$ to item *i* by an individual in class *C*

- Different models assume different forms of $P(X_i = x_i | C, \mathbf{Q}_i)$
- General frameworks apply link functions $\ell[P(X_i = x_i | C, \mathbf{Q}_i)] = f(X_i, C, \mathbf{Q}_i)$

Knowledge Structure Theory

KST profiles individuals by the collections of items they are capable to master. Dependences between items in a domain Q define a probabilistic structure (Q, \mathcal{K}, π) with $\{\emptyset, Q\} \subseteq \mathcal{K} \subseteq 2^Q$ and $\pi(K)$ a probability for $K \in \mathcal{K}$.

The probability of a pattern of responses $X \subseteq Q$ is given by the BLIM

$$P(X) = \sum_{K \in \mathcal{K}} P(X|K) \pi(K) \quad \text{with} \quad P(X|K) = \prod_{q \in K \setminus X} \beta_q \prod_{q \in K \cap X} (1 - \beta_q) \prod_{q \in X \setminus K} \eta_q \prod_{q \in \overline{K} \cap \overline{X}} (1 - \eta_q)$$

where η_q and β_q are lucky guess and careless error probabilities on item q

2 Primitives

2 Operations

Results: Taxonomy

Conclusions

Appendix

11 | Noventa, Heller & Kelava

- A probabilistic structure is a triple $(D, \mathcal{Y}, P_{\mathcal{Y}})$ with

- *D* a **domain** of atomic elements d_j
- \mathcal{Y} a family of subsets $Y \subseteq D$, called states, such that $\{\emptyset, D\} \subseteq \mathcal{Y} \subseteq 2^D$
- $P_{\mathcal{Y}}$ a probability distribution over \mathcal{Y}

- Presently, the atomic elements have no interpretation/semantic, they could be anything (e.g., items, skills, responses, thresholds)

- Set-theoretic notation can be converted into vector notation

KST not	ation	CDA/IRT notation		
Name	Symbol	Name	Symbol	
State variable	$Y \in \mathcal{Y}$	Random vector	$Y:\mathcal{Y} o \{0,1\}^{ D }$	
State (latent class)	$Y = \{d_j\}_{j \in J}$	Binary vector	$Y(\{d_j\}_{j\in J}) = y \in \{0,1\}^{ D }$	
Indicator function	$1_{Y}(d_{j})$	Random variable	$Y_j: \mathcal{Y} \to \{0, 1\}$	
Atomic element	$d_j \in Y \subseteq D$	Realization	$y_j \in \{0, 1\}$	
Probability measure	$P_{\mathcal{Y}}: \mathcal{Y} \rightarrow [0, 1]$	Probability measure	$P_{\mathcal{Y}}: \{0,1\}^{ D } ightarrow [0,1]$	
Probability vector	$P_{\mathcal{Y}} = [P(Y)]_{Y \in \mathcal{Y}}^{T}$	Probability vector	$P_{\mathcal{Y}} = [P(Y = y)]_{y \in \{0,1\}^{ D }}^{T}$	

- From the perspective of latent variable models the states $Y \in \mathcal{Y}$ can be seen as ordered latent classes
- Nominal latent classes are collections of singletons, i.e.

$$\mathcal{Y} = \{\{d_1\}, \{d_2\}, \dots, \{d_{|D|}\}\}$$

with every singleton corresponding to a latent class.

- Different **sorts** of structures follow from different interpretations of the atomic elements in the domain
- \mathcal{K} Knowledge structures ($Q, \mathcal{K}, \pi_{\mathcal{K}}$)

Structures that consider items q_i or sub-items/item thresholds $q_{i,n}$

Chain of items: $\mathcal{K} = \{\emptyset, \{q_1\}, \{q_1, q_2\}, \{q_1, q_2, q_3\}\}$

 $\emptyset \qquad \{q_1\} \qquad \{q_1,q_2\} \qquad \{q_1,q_2,q_3\}$

Polytomous item: $\underline{\mathcal{K}}_{i} = \{\emptyset, \{q_{i,1}\}, \{q_{i,1}, q_{i,2}\}, \{q_{i,1}, q_{i,2}, q_{i,3}\}\}$

 $\{q_{i,1}\}$ $\{q_{i,1}, q_{i,2}\}$ $\{q_{i,1}, q_{i,2}, q_{i,3}\}$

IRT models for dichotomous items correspond to the power set $\mathcal{K} = 2^Q$ case, while IRT models for polytomous items correspond to the chain

 \mathcal{X} Response structures $(R, \mathcal{X}, P_{\mathcal{X}})$

```
Power set: \mathcal{X} = 2^R
Chain: \mathcal{X} = \{\emptyset, \{r_1\}, \{r_1, r_2\}, \{r_1, r_2, r_3\}\}
```

KST, CDA, and IRT models for dichotomous items assume R = Q and $\mathcal{X} = 2^{Q}$, that is , using directly the random vector notation for $X \subseteq Q$

IRT models for polytomous items assume instead a chain

C Competence structures (S, C, ν_C)

Structures of attributes s_a , or sub-attributes/attribute thresholds $s_{a,n}$

Power set of attributes: $C = 2^S$

Chain of attributes: $C = \{ \emptyset, \{s_1\}, \{s_1, s_2\}, \{s_1, s_2, s_3\} \}$

Polytomous attribute: $\underline{C}_{a} = \{ \emptyset, \{s_{a,1}\}, \{s_{a,1}, s_{a,2}\}, \{s_{a,1}, s_{a,2}, s_{a,3}\} \}$

Primitive I: Structure

- CDMs typically assume a power set of attributes while IRT models require to 'extend' a chain of attribute thresholds to an 'increasingly rich' attribute with an 'increasingly' rich domain of thresholds
- An *infinite competence structure* is a pair $(\underline{S}_a, \underline{C}_a)$ consisting of
 - a) a domain of thresholds $\underline{S}_a = \{s_{a,n}\}_{n \in \mathbb{I}^+}$ with index sets $\mathbb{I} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$
 - b) a family \underline{C}_a in which every non-empty competence state collects all thresholds that precede a given one, that is

$$\underline{C}_{a} = \{C(t)\}_{t \in \mathbb{I}^{\geq}} \quad \text{with} \quad \begin{cases} C(0) = \emptyset \\ C(t) = \{s_{a,n} \in \underline{S}_{a} : n \leq t, n \in \mathbb{I}^{+} \} \\ C(\infty) = \underline{S}_{a} \end{cases}$$

and non-negative \mathbb{I}^{\geq} , positive \mathbb{I}^+ , and extended $\overline{\mathbb{I}} = \mathbb{I} \cup \{-\infty, +\infty\}$ indices.

- Latent traits are defined as (realizations of) random variables defined over infinite competence structures

$$\theta:\underline{\mathcal{C}}_{a}\to\mathbb{R}$$

Primitive II: Process

- Given two structures $(D, \mathcal{Y}, P_{\mathcal{Y}})$ and $(R, \mathcal{X}, P_{\mathcal{X}})$, a **process** is a pair $(\mathcal{Y}, \mathcal{X})$ such that it holds $P_{\mathcal{X}} = P_{\mathcal{X}|\mathcal{Y}} \cdot P_{\mathcal{Y}}$, i.e. element-wise for all $X \in \mathcal{X}$

Primitive II: Process

- A stochastic process generalizes Latent Variable Models (LVMs)
- If \mathcal{Y} is a collection of latent classes Y, one has latent class models

$$P(X) = \sum_{Y \in \mathcal{Y}} P(X|Y)P(Y)$$

e.g., $(2^S, 2^Q)$ is the core CDM and $(\mathcal{K}, 2^Q)$ the basic KST model

$$P(X) = \sum_{C \in 2^{\mathcal{S}}} P(X|C)\nu(C), \quad P(X) = \sum_{K \in \mathcal{K}} P(X|C)\pi(K).$$

- If \mathcal{Y} is an infinite competence structure, one has latent trait models

$$P(X) = \int_{Y \in \mathcal{Y}} P(X|Y) dP(Y)$$

e.g., $(\underline{C}, 2^Q)$ is an IRT model

$$\mathsf{P}(X) = \int_{\mathcal{C} \in \underline{\mathcal{C}}} \mathsf{P}(X|\mathcal{C}) d\mathsf{P}(\mathcal{C}) = \int \mathsf{P}(X| heta)
u(heta) d heta$$

for $\theta : \underline{\mathcal{C}} \to \mathbb{R}$ with pdf $\nu(\theta)$ associated to the measure $P_{\mathcal{Y}}$

Primitive II: Process

- But a relation between structures can also be deterministic in nature
- A **deterministic** process returns deterministic relations which are typical of KST and CDA/CDMs

KST A process $(\mathcal{C}, \mathcal{K})$ is a **problem function** $p : 2^{S} \rightarrow 2^{Q}$ since it holds

$$P(K|C) = \xi_{KC} = \mathbf{1}_{p^{-1}(\{K\})}(C) = egin{cases} 1 & p(C) = K \ 0 & ext{otherwise} \end{cases}$$

for $K \in \mathcal{K}$ and $C \in \mathcal{C}$

CDA A process (C, \mathcal{K}) is the most general of three types of **Q**-matrices

Q-matrix	Symbol	Elements	Links	То
Generalized	$Q_{\mathcal{K},\mathcal{C}}$	$\xi_{KC} \in \{0, 1\}$	knowledge state $K \in \mathcal{K}$	competence state $C \in C$
Extended	Q*	$\xi_{iC} \in \{0, 1\}$	item $oldsymbol{q}_i\inoldsymbol{Q}$	competence state $\mathcal{C} \in \mathcal{C}$
Traditional	Q	$\xi_{ia} \in \{0, 1\}$	item $q_i \in Q$	skill $s_a \in S$

Sequential hypothesis with two-processes

Many models can be systematized by considering two processes sequentially.

Basic structure of a uni-dimensional 4-parameter IRT model

When the competence structure is infinite, the processes yield a 4-parameter IRT model

$$P(X_i = 1|\theta) = c_i + (1 - c_i - d_i)\pi(\lbrace q_i \rbrace|\theta)$$

Structures and Processes combined yield model 'Templates'

- Structures and processes can be combined in different ways
- i) sequentially (memoryless)

Given two processes (C, \mathcal{K}) and $(\mathcal{K}, \mathcal{X})$, a memoryless two-processes model is given by a triple $(C, \mathcal{K}, \mathcal{X})$ such that for all $X \in \mathcal{X}$ it holds

$$\mathcal{P}(X) = \sum_{\mathcal{C} \in \mathcal{C}} \sum_{K \in \mathcal{K}} \mathcal{P}(X|K) \pi(K|\mathcal{C}) \nu(\mathcal{C}).$$

or in vector notation $P_{\mathcal{X}} = P_{\mathcal{X}|\mathcal{K}} \cdot \pi_{\mathcal{K}|\mathcal{C}} \cdot \nu_{\mathcal{C}}$

ii) in parallel (non-memoryless) and dependent

A process of the form $(\mathcal{C} \times \mathcal{K}, \mathcal{X})$ such that

$$P(X) = \sum_{C \in \mathcal{C}} \sum_{K \in \mathcal{K}} P(X|C, K) \pi(K|C) \nu(C)$$

iii) **in parallel** (non-memoryless) but independent A process of the form ($C_1 \times C_2, \mathcal{X}$) such that

$$P(X) = \sum_{C \in \underline{\mathcal{C}}_1} \sum_{C \in \underline{\mathcal{C}}_2} P(X|C_1) P(X|C_2) \nu(C_1, C_2).$$

iv) ...

Templates can be given different interpretations

Competence, knowledge, and response structures of different sorts can be specified in the processes thus providing different interpretations

Triple	Models for
$(\mathcal{C},\mathcal{K},\mathcal{X})$	dichotomous items and attributes
$(\mathcal{C} \times \mathcal{V})$	dichotomous items depending on
$(\underline{\boldsymbol{\upsilon}}_{a},\mathcal{K},\mathcal{A})$	a polytomous attribute (uni-dimensional)
$(\mathcal{C},\mathcal{K},\mathcal{Y})$	a dichotomous item depending
$(\mathcal{C},\mathcal{K}_{i},\mathcal{K}_{i})$	on dichotomous attributes
$(\mathcal{C}, \mathcal{K}, \mathcal{Y})$	a dichotomous item depending on
$(\underline{c}_a, \mathcal{K}_l, \mathcal{K}_l)$	a polytomous attribute (uni-dimensional)
$(\mathcal{C} \times \mathcal{C} \times \mathcal{K}, \mathcal{Y})$	a dichotomous item depending on two
$(\underline{c}_a \times \underline{c}_{a'}, \mathcal{K}_i, \mathcal{K}_i)$	polytomous attributes (multi-dimensional)
$(\mathcal{C}, \underline{\mathcal{K}}_i, \mathcal{X}_i)$	a polytomous item depending on dichotomous attributes
$(\underline{\mathcal{C}}_{a}, \underline{\mathcal{K}}_{i}, \mathcal{X}_{i})$	a polytomous item and attribute (trait)
$(\mathcal{C} \times \mathcal{C} \times \mathcal{K} \times \mathcal{V})$	a polytomous item depending on two
$(\underline{}_{a} \times \underline{}_{a'}, \underline{}_{i}, \underline{\lambda}_{i})$	polytomous attributes (multi-dimensional)
	•••

2 Primitives

2 Operations

Results: Taxonomy

Conclusions

Appendix

25 | Noventa, Heller & Kelava

2 Operations on processes

- The conditional probabilities $P_{\mathcal{X}|\mathcal{Y}}$ are subject to two main operations
- i) Factorization

Some form of probabilistic or conditional independence is assumed. E.g., (strong) local stochastic independence (LI)

$$P(X|Y) = \prod_{r_k \in R} P(X_k = 1|Y)^{X_k} (1 - P(X_k = 1|Y))^{1 - X_k}$$

Generalized Local Independence (GLI, Noventa et al. 2019)

$$P(X|Y) = \prod_{r_k \in X} P(X_k = 1|Y) \prod_{r_k \in X^{\mathcal{O}}} (1 - P(X_k = 1|Y))$$

where $X^{\mathcal{O}}$ is the outer fringe of X

$$X^{\mathcal{O}} = \{r \in R | X \cup \{r\} \in \mathcal{X}\}$$

- For $\mathcal{X} = 2^R$, GLI returns LI

2 Operations on processes

ii) Reparametrization

conditional probabilities are transformed via link functions as in generalized latent variable models (GLVMs)

Link functions (logit, probit, log, identity) are set

 $\ell_r[P(X|Y)] = f_r(X, Y) \quad \text{for some} \quad f_r : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ $\ell_{r_k}[P(X_k|Y)] = f_{r_k}(X_k, Y) \quad \text{for all} \quad Y \in \mathcal{Y} \quad \text{and some} \quad f_{r_k} : \mathcal{X}_k \times \mathcal{Y} \to \mathbb{R}$

a linear kernel is typically selected

$$f_{r_k}(X_k = x_k, Y) = \sum_{T \in \mathcal{Y}, T \subseteq Y} \lambda_{x_k, T}$$

and can be shown to yield

- a) CDA kernel for finite competence structures
- b) IRT kernel for infinite competence structures

2 Primitives

2 Operations

Results: Taxonomy

Conclusions

Appendix

Taxonomy

Different KST, CDA, and IRT models can then be derived depending on

- 1. Which **structures** are chosen?
- 2. How many **processes** are involved to combine structures?
 - i) 1 process
 - ii) 2 memoryless processes
 - iii) 2 non-memoryless processes
 - iv) ...
- 3. How conditional probabilities in the processes are set?

(There are some common assumptions in literature)

3bis. Is some form of independence (factorization) assumed on ...?

- i) items
- ii) attributes
- iii) thresholds
- iv) responses
- v) ...
- 3ter. Which link function (identity, logit, probit, logarithm) is chosen and which terms in the kernel are retained (**reparametrization**)?
 - i) positive λ s conjunctive models
 - ii) some negative λ disjunctive models
 - iii) only λ for main effects main effects models

Common assumptions on the p- and g-processes

- The g-process if present is
 - 1. always GLI-factorized
 - 2. either assumed to be competence independent P(X|K) or dependent P(X|K, C)
- The *p*-process is
 - 1. sometimes GLI-factorized but not always
 - 2. sometimes assumed to be independent on competence

$$\pi_{\mathcal{K}|\mathcal{C}} = \pi_{\mathcal{K}}$$

3. sometimes assumed to be deterministic

$$\pi_{\mathcal{K}|\mathcal{C}} = \mathbf{Q}_{\mathcal{K},\mathcal{C}}$$

- 4. either assumed to allow or not independence of the attributes and their processes
- 5. sometimes assumed to allow for 'changes' in competence **Effective competence state**:

$$\pi_{\mathcal{K}|\mathcal{C}} = \mathbf{Q}_{\mathcal{K},\mathcal{C}} \cdot \nu_{\mathcal{C}|\mathcal{C}}$$

Responses are obtained as if the individual was in a different competence state. This is considered by an additional process (C, C) and allows to rewrite $\pi_{K|C}$ as

$$\pi(\mathbf{K}|\mathbf{C}) = \sum_{\mathbf{C}'\in\mathbf{p}^{-1}(\mathbf{K})} \nu(\mathbf{C}'|\mathbf{C}).$$

Basic structure of KST and CDA models

Taxonomy: pure *p*-process, GLVMs

g-process	<i>p</i> -process	Independent $\pi_{\mathcal{K} \mathcal{C}} = \pi_{\mathcal{K}}$	Deterministic $\pi_{\mathcal{K} \mathcal{C}} = \mathbf{Q}_{\mathcal{K},\mathcal{C}}$	No independence on attributes	Effective competence state and independent attributes	Parallel and Independent processes on attributes
No <i>g</i> -process No left-side added structure	No GLI on $\pi_{\mathcal{K} \mathcal{C}}$	Simple proportions and log-linear models	Proportions based on Problem function	 KST: State Response Function CDA Main effects models: NIDO, R-RUM, C-RUM/LLM, ACDM IRT-NIRT Single-item IRFs: a) Unidimensional: e.g., 1-2PL (Rasch, Birnbaum), 1-2PNO, ARRG, LLTM, Q-Diffusion, MHM, DMM b) Polytomous Divide-by-Total: e.g., BNM, RSM, PCM, GPCM, GPMNM, GRM² c) Polytomous Difference models: e.g., GRM² MIRT Single-item IRFs: a) Multidimensional: e.g., M2PL, MNO b) Polytomous Divide-by-Total: e.g., MPCM, MGPCM c) Polytomous Divide-by-Total: e.g., M2PL, MNO b) Polytomous Divide-by-Total: e.g., MPCM, MGPCM c) Polytomous difference models: e.g., MGRM 	CDA Single-item IRFs: a) Conjunctive models: NIDA, MCLCM-C, (Full) NC-RUM; b) Disjunctive models: MCLMC-D	MIRT Single-item IRFs: e.g., MLTM-D
	GLI on $\pi_{\mathcal{K} \mathcal{C}}$	KST: SLM Simple proportions and independence on items. Independence and quasi-independence in log-linear models	Proportions based on Problem function and Independence on items	 KST: Θ-SLM; IRT-MIRT: a) Local independence on multiple items using the IRFs given above b) Sequential/step models, GRM¹, Acceleration, CRMs; 	CDA: Local Independence on multiple items using the IRFs given above	MIRT: Local Independence on multiple items using the IRFs given above
		L	General	CDA frameworks: GDINA, LCDM, G	DM	

Taxonomy: p + g-process, left-side added GLVMs

g-process	<i>p</i> -process	Independent $\pi_{\mathcal{K} \mathcal{C}} = \pi_{\mathcal{K}}$	Deterministic $\pi_{\mathcal{K} \mathcal{C}} = \mathbf{Q}_{\mathcal{K},\mathcal{C}}$	No independence on attributes	Effective competence state and independent attributes	Parallel and Independent processes on attributes
GLI on <i>g</i> -process Left-side added structure	No GLI on $\pi_{\mathcal{K} \mathcal{C}}$	KST : BLIM Log-linear model formulation of LCA	KST: CBLIM CDA: MS-DINA DINA, DINO RDINA, RDINO HO-DINA	KST: O-BLIM, LKS IRT-MIRT Single-item IRFs: a) Unidimensional: e.g., 3-4PL, 3-4PNO, Choppin's extension of 3PL b) Multidimensional: e.g., M3PL, M3NO c) Polytomous: e.g., Samejima's extension of BNM	CDA Single-item IRFs Unified Model, HO-PINC, HO-DINA	CDA: PINC MIRT Single-item IRFs: e.g., MLTM, GLTM
	GLI on $\pi_{\mathcal{K} \mathcal{C}}$	KST : BLIM+SLM	KST-CDA: Local independence on multiple items using the IRFs given above	KST: ⊖-BLIM+⊝-SLM IRT-MIRT: Local independence on multiple items using the IRFs given above	CDA: Local independence on multiple items using the IRFs given above	MIRT: Local independence on multiple items using the IRFs given above
		-	Gene	eral CDA frameworks: GDINA, LCDM, GD	Μ	
GLI on Competence-based <i>g</i> -process and left-side added structure	No GLI on $\pi_{\mathcal{K} \mathcal{C}}$	MM-IRT : MRM, Hybrid ⁵ , Discrete Mixture Models	Generalized versions of KST and CDA models with competence-based error parameters	IRT-MIRT: Single-item IRFs a) Unidimensional: e.g., 1PL-AG, 2PLE b) Multidimensional: e.g., M2PL-AIG	Generalized versions of CDA models with competence-based error parameters	Generalized versions of MIRT models with competence-based error parameters
	GLI on $\pi_{\mathcal{K} \mathcal{C}}$	Combination of MM-IRT with KST state factorization of membership probability	Generalized versions of KST and CDA models with competence-based error parameters	IRT-MIRT: Local independence on multiple items using the IRFs given above	Generalized versions of CDA models with GLI and competence-based error parameters	Generalized versions of MIRT models with GLI and competence-based error parameters
				General CDA frameworks: MGDM		

2 Primitives

2 Operations

Results: Taxonomy

Conclusions

Appendix

34 | Noventa, Heller & Kelava

Conclusions

- 1. Two main primitives: 'structure' and 'process'
- 2. Two main operations: 'factorization' and 'reparametrization'
- 3. A two-processes approach provides a practical taxonomy
- 4. KST and 'early CDA' models appear to be based on the same theory applied to atomic entities of different sorts
- 5. 'Modern CDA' approaches appear to be discrete versions of IRT models (i.e., 'one kernel to derive them all')
- 6. General CDA frameworks/models correspond in essence to choices of link functions and kernels
- 7. Latent-trait extended versions of KST models generalize IRT models (e.g., they allow for alternative ways of modelling local dependence)

Thanks for your attention!

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) Grant No. NO 1505/2-1.

Contact: Stefano Noventa

Eberhard Karls Universität Tübingen Wirtschafts- und Sozialwissenschaftlichen Fakultät Methodenzentrum

Haußerstr. 11 stefano.noventa@uni-tuebingen.de

2 Primitives

2 Operations

Results: Taxonomy

Conclusions

Appendix

37 | Noventa, Heller & Kelava

Structure	Elements - Random	Domain	State	Structure	Probability	
Knowledge						
Dichotomous	<i>i</i> -th item	q_i	Q	ĸ	ĸ	$\pi = [\pi(\mathbf{K})]^{T}$
items	(Std) realization	$K_i = k_i$	{0, 1}			$\pi_{\mathcal{K}} = [\pi(\mathbf{\Lambda})]_{\mathbf{K}\in\mathcal{K}}$
Polytomous	<i>n</i> -th threshold	q _{i,n}	\underline{Q}_{i}			
Itom	item realization	K K.	$\{\kappa_{i,t}\}_{t\in\{0,\ldots,m_i\}}$	ĸ	K	$\pi_{\rm m} = [\pi(\mathbf{K})]^{T}$
ILEIII	(Std) realization	$\kappa_i - \kappa_i$	$\{0, \ldots, m_i\}^{T}$		$\underline{\mathcal{N}}_i$	$\pi \underline{\mathcal{K}}_{i} = [\pi(\mathbf{\mathcal{K}})]_{\mathbf{K} \in \underline{\mathcal{K}}_{i}}$
	threshold realization	$K_{i,n} = k_{i,n}$	{0,1}			
Competence						
Dichotomous	a-th attribute	S _a	S	C	С	$u_{1} = [u(\mathbf{C})]^{T}$
Attributes	(Std) realization	$C_a = \alpha_a$	{0, 1}		L C	$\nu_{\mathcal{C}} - [\nu(\mathbf{C})]_{\mathcal{C}\in\mathcal{C}}$
Categorical	n-th threshold	S _{a,n}	<u>S</u> _a			
Attributo	attribute realization	$C_a = c_a$	$\{\alpha_{a,t}\}_{t\in\{0,\ldots,m_a\}}$	C	С <u>С</u> _а	$u_{n} = [u(\mathbf{C})]^{T}$
Allibule	(Std) realization	$C_a = \alpha_a$	$\{0,, m_a\}$			$\nu_{\underline{C}_a} - [\nu(\mathbf{C})]_{C \in \underline{C}_a}$
	threshold realization	$C_{a,n} = c_{a,n}$	{0,1}			
Response						
All forms	k-th response	r_k	R	Y	× ×	$\mathbf{P}_{} = [\mathbf{P}(\mathbf{X})]^{T}$
of Responses	(Std) realization	$X_k = x_k$	$\{0,\ldots,\mathbf{m}_k\}$		A	$I X - [\Gamma(\Lambda)]X \in X$

Taxonomy: *p*-process, GLVMs

g-process	<i>p</i> -process	Independent $\pi_{\mathcal{K} \mathcal{C}} = \pi_{\mathcal{K}}$	Deterministic $\pi_{\mathcal{K} \mathcal{C}} = \mathbf{Q}_{\mathcal{K},\mathcal{C}}$	No independence on attributes	Effective competence state and independent attributes	Parallel and Independent processes on attributes
No g-process, $P_{\mathcal{X} \mathcal{K}} = l_{ \mathcal{X} }$ $(\mathcal{K} = \mathcal{X})$ No left side added structure	No GLI on items on $\pi_{\mathcal{K} \mathcal{C}}$	$P_{\mathcal{X}}=\pi_{\mathcal{K}}$	$P_{\mathcal{X}} = \pi_{\mathcal{K}}$ $\pi_{\mathcal{K}} = \mathbf{Q}_{\mathcal{K},\mathcal{C}} \cdot \nu_{\mathcal{C}}$	$\begin{aligned} \boldsymbol{P}_{\mathcal{X}} &= \pi_{\mathcal{K}} \\ \pi_{\mathcal{K}} &= \pi_{\mathcal{K} \mathcal{C}} \cdot \nu_{\mathcal{C}} \\ \pi_{\mathcal{K} \mathcal{C}} &= \ell_q^{-1} [f_q(\mathcal{K}, \mathcal{C})] \end{aligned}$	$P_{\mathcal{X}} = \pi_{\mathcal{K}} = \pi_{\mathcal{K} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $\pi_{\mathcal{K} \mathcal{C}} = \ell_q^{-1}[f_q(\mathcal{K}, \mathcal{C})]$ $\pi_{\mathcal{K} \mathcal{C}} = \mathbf{Q}_{\mathcal{K}, \mathcal{C}} \cdot \nu_{\mathcal{C} \mathcal{C}}$ $\nu_{\mathcal{C} \mathcal{C}} = \odot_a \nu_{\mathcal{C}_a \mathcal{C}}$ $\nu_{\mathcal{C}_a \mathcal{C}} = \ell_{s_a}^{-1}[\tilde{\nu}(\mathcal{C}_a, \mathcal{C})]$	$P_{\mathcal{X}} = \pi_{\mathcal{K}} = \pi_{\mathcal{K} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $\pi_{\mathcal{K} \mathcal{C}} = \bigotimes_{a} \pi_{\mathcal{K} \mathcal{C}_{a}}$ $\pi_{\mathcal{K} \mathcal{C}_{a}} = \ell_{q}^{-1}[f_{q}(\mathcal{K}, \mathcal{C}_{a})]$
	GLI on items on $\pi_{\mathcal{K} \mathcal{C}}$	$P_{\mathcal{X}} = \pi_{\mathcal{K}}$ $\pi_{\mathcal{K}} = \odot_i \pi_{\mathcal{K}_i}$	$P_{\mathcal{X}} = \pi_{\mathcal{K}}$ $\pi_{\mathcal{K}} = \pi_{\mathcal{K} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $\pi_{\mathcal{K} \mathcal{C}} = \odot_{i}\pi_{\mathcal{K}_{i} \mathcal{C}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}} = \mathbf{Q}_{\mathcal{K}_{i},\mathcal{C}}$	$P_{\mathcal{X}} = \pi_{\mathcal{K}}$ $\pi_{\mathcal{K}} = \pi_{\mathcal{K} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $\pi_{\mathcal{K} \mathcal{C}} = \odot_{i}\pi_{\mathcal{K}_{i} \mathcal{C}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}} = \ell_{q_{i}}^{-1}[f_{q_{i}}(\mathcal{K}_{i}, \mathcal{C})]$	$P_{\mathcal{X}} = \pi_{\mathcal{K}} = \pi_{\mathcal{K} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $\pi_{\mathcal{K} \mathcal{C}} = \odot_{i}\pi_{\mathcal{K}_{i} \mathcal{C}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}} = \ell_{q_{i}}^{-1}[f_{q_{i}}(\mathcal{K}_{i}, \mathcal{C})]$ $\pi_{\mathcal{K}_{i} \mathcal{C}} = \mathbf{Q}_{\mathcal{K}_{i},\mathcal{C}^{i}} \cdot \nu_{\mathcal{C}^{i} \mathcal{C}}$ $\nu_{\mathcal{C}^{i} \mathcal{C}} = \odot_{a}\nu_{\mathcal{C}^{i}_{a} \mathcal{C}}$ $\nu_{\mathcal{C}^{i}_{a} \mathcal{C}} = \ell_{sa}^{-1}[\tilde{\nu}(\mathcal{C}^{i}_{a}, \mathcal{C})]$	$P_{\mathcal{X}} = \pi_{\mathcal{K}} = \pi_{\mathcal{K} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $\pi_{\mathcal{K} \mathcal{C}} = \odot_{i}\pi_{\mathcal{K}_{i} \mathcal{C}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}} = \bigotimes_{a} \pi_{\mathcal{K}_{i} \mathcal{C}_{a}^{i}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}_{a}^{i}} = \ell_{q_{i}}^{-1}[f_{q_{i}}(\mathcal{K}_{i}, \mathcal{C}_{a}^{i})]$

Conclusions 000

Appendix 00000

Taxonomy: p + g-processes, GLVMs with left side added parameters

g-process	<i>p</i> -process	Independent $\pi_{\mathcal{K} \mathcal{C}} = \pi_{\mathcal{K}}$	Deterministic $\pi_{\mathcal{K} \mathcal{C}} = \mathbf{Q}_{\mathcal{K},\mathcal{C}}$	No independence on attributes	Effective competence state and independent attributes	Parallel and Independent processes on attributes
GLI on $P_{\mathcal{X} \mathcal{K}} eq I_{ \mathcal{X} }$ $(\mathcal{K} \subseteq \mathcal{X})$ Left-side added structure	No GLI on items on $\pi_{\mathcal{K} \mathcal{C}}$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{K}} \cdot \pi_{\mathcal{K}}$ $P_{\mathcal{X} \mathcal{K}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{K}}$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $P_{\mathcal{X} \mathcal{C}} = P_{\mathcal{X} \mathcal{K}} \cdot \mathbf{Q}_{\mathcal{K},\mathcal{C}}$ $P_{\mathcal{X} \mathcal{K}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{K}}$ $P_{\mathcal{X}_{k} \mathcal{K}} = \ell_{f_{k}}^{-1} [f_{f_{k}}(\mathcal{X}_{k},\mathcal{K})]$ $\pi_{\mathcal{K}} = \mathbf{Q}_{\mathcal{K},\mathcal{C}} \cdot \nu_{\mathcal{C}}$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $P_{\mathcal{X} \mathcal{C}} = P_{\mathcal{X} \mathcal{K}} \cdot \pi_{\mathcal{K} \mathcal{C}}$ $P_{\mathcal{X} \mathcal{K}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{K}}$ $P_{\mathcal{X}_{k} \mathcal{K}} = \ell_{k}^{-1} [f_{r_{k}}(\mathcal{X}_{k}, \mathcal{K})]$ $\pi_{\mathcal{K} \mathcal{C}} = \ell_{q}^{-1} [f_{q}(\mathcal{K}, \mathcal{C})]$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $P_{\mathcal{X} \mathcal{C}} = P_{\mathcal{X} \mathcal{K}} \cdot \pi_{\mathcal{K} \mathcal{C}}$ $P_{\mathcal{X} \mathcal{K}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{K}}$ $P_{\mathcal{X} \mathcal{C}} = \ell_{r}^{-1} [f_{r}(\mathcal{X}, \mathcal{C})]$ $\pi_{\mathcal{K} \mathcal{C}} = \mathbf{Q}_{\mathcal{K}, \mathcal{C}} \cdot \nu_{\mathcal{C} \mathcal{C}}$ $\nu_{\mathcal{C} \mathcal{C}} = \odot_{a} \nu_{\mathcal{C}_{a} \mathcal{C}}$ $\nu_{\mathcal{C}_{a} \mathcal{C}} = \ell_{sa}^{-1} [\tilde{\nu}(\mathcal{C}_{a}, \mathcal{C})]$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $P_{\mathcal{X} \mathcal{C}} = P_{\mathcal{X} \mathcal{K}} \cdot \pi_{\mathcal{K} \mathcal{C}}$ $P_{\mathcal{X} \mathcal{K}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{K}}$ $P_{\mathcal{X}_{k} \mathcal{K}} = \ell_{f_{k}}^{-1} [f_{f_{k}}(\mathcal{X}_{k}, \mathcal{K})]$ $\pi_{\mathcal{K} \mathcal{C}} = \bigotimes_{a} \pi_{\mathcal{K} \mathcal{C}_{a}}$ $\pi_{\mathcal{K} \mathcal{C}_{a}} = \ell_{q}^{-1} [f_{q}(\mathcal{K}, \mathcal{C}_{a})]$
	GLI on items on $\pi_{\mathcal{K} \mathcal{C}}$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{K}} \cdot \pi_{\mathcal{K}}$ $P_{\mathcal{X} \mathcal{K}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{K}}$ $\pi_{\mathcal{K}} = \odot_{i} \pi_{\mathcal{K}_{i}}$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $P_{\mathcal{X} \mathcal{C}} = P_{\mathcal{X} \mathcal{K}} \cdot \pi_{\mathcal{K} \mathcal{C}}$ $P_{\mathcal{X} \mathcal{K}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{K}}$ $P_{\mathcal{X}_{k} \mathcal{K}} = \ell_{f_{k}}^{-1} [f_{f_{k}}(\mathcal{X}_{k}, \mathcal{K})]$ $\pi_{\mathcal{K} \mathcal{C}} = \odot_{i} \pi_{\mathcal{K}_{i} \mathcal{C}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}} = \mathbf{Q}_{\mathcal{K}_{i},\mathcal{C}}$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $P_{\mathcal{X} \mathcal{C}} = P_{\mathcal{X} \mathcal{K}} \cdot \pi_{\mathcal{K} \mathcal{C}}$ $P_{\mathcal{X} \mathcal{K}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{K}}$ $P_{\mathcal{X}_{k} \mathcal{K}} = \ell_{f_{k}}^{-1} [f_{f_{k}}(\mathcal{X}_{k}, \mathcal{K})]$ $\pi_{\mathcal{K} \mathcal{C}} = \odot_{i} \pi_{\mathcal{K}_{i} \mathcal{C}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}} = \ell_{q_{i}}^{-1} [f_{q_{i}}(\mathcal{K}_{i}, \mathcal{C})]$	$P_{\mathcal{X}} = P_{\mathcal{X} C} \cdot \nu_{C}$ $P_{\mathcal{X} C} = P_{\mathcal{X} K} \cdot \pi_{\mathcal{K} C}$ $P_{\mathcal{X} K} = \odot_{k} P_{\mathcal{X}_{k} K}$ $\pi_{\mathcal{K} C} = \odot_{i} \pi_{\mathcal{K}_{i} C}$ $P_{\mathcal{X}_{k} C} = \ell_{I_{k}}^{-1} [f_{I_{k}}(\mathcal{X}_{k}, C)]$ $\pi_{\mathcal{K}_{i} C} = \mathbf{Q}_{\mathcal{K}_{i},C^{i}} \cdot \nu_{C^{i} C}$ $\nu_{C^{i} C} = \odot_{a} \nu_{C_{a}^{i} C}$ $\nu_{C_{a}^{i} C} = \ell_{s_{a}}^{-1} [\tilde{\nu}(C_{a}^{i}, C)]$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{C}} \cdot \nu_{\mathcal{C}}$ $P_{\mathcal{X} \mathcal{C}} = P_{\mathcal{X} \mathcal{K}} \cdot \pi_{\mathcal{K} \mathcal{C}}$ $P_{\mathcal{X} \mathcal{K}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{K}}$ $P_{\mathcal{X}_{k} \mathcal{K}} = \ell_{l_{k}}^{-1} [f_{l_{k}}(\mathcal{X}_{k}, \mathcal{K})]$ $\pi_{\mathcal{K} \mathcal{C}} = \odot_{i} \pi_{\mathcal{K}_{i} \mathcal{C}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}} = \bigotimes_{a} \pi_{\mathcal{K}_{i} \mathcal{C}_{a}^{i}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}_{a}^{i}} = \ell_{q_{i}}^{-1} [f_{q_{i}}(\mathcal{K}_{i}, \mathcal{C}_{a}^{i})]$

Taxonomy: p + g-processes, GLVMs with competence-based left side added parameters

g-process	<i>p</i> -process	Independent $\pi_{\mathcal{K} \mathcal{C}} = \pi_{\mathcal{K}}$	Deterministic $\pi_{\mathcal{K} \mathcal{C}} = \mathbf{Q}_{\mathcal{K},\mathcal{C}}$	No independence on attributes	Effective competence state and independent attributes	Parallel and Independent processes on attributes
GLI on $P_{\mathcal{X} \mathcal{K},\mathcal{C}} eq l_{ \mathcal{X} } \ (\mathcal{K} \subseteq \mathcal{X})$ Competence-based Left-side added structure	No GLI on items on $\pi_{\mathcal{K} \mathcal{C}}$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{M}} \cdot \pi_{\mathcal{M}}$ $\pi_{\mathcal{M}} = v[\pi_{\mathcal{K}} \cdot \nu_{\mathcal{C}}^{T}]$ $P_{\mathcal{X} \mathcal{M}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{M}}$ $P_{\mathcal{X}_{k} \mathcal{M}} = \ell_{f_{k}}^{-1}[f_{f_{k}}(\mathcal{X}_{k}, \mathcal{M})]$ $\mathcal{M} = (\mathcal{C}, \mathcal{K})$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{M}} \cdot \pi_{\mathcal{M}}$ $P_{\mathcal{X} M} = \odot_{k} P_{\mathcal{X}_{k} M}$ $P_{\mathcal{X}_{k} M} = \ell_{r_{k}}^{-1} [f_{r_{k}}(\mathcal{X}_{k}, M)]$ $\pi_{\mathcal{M}} = \mathbf{v}[\langle \mathbf{Q}_{\mathcal{K}, \mathcal{C}}, 1 \cdot \nu_{\mathcal{C}}^{T} \rangle_{H}^{T}]$ $M = (C, K)$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{M}} \cdot \pi_{\mathcal{M}}$ $P_{\mathcal{X} M} = \odot_{k} P_{\mathcal{X}_{k} M}$ $P_{\mathcal{X}_{k} M} = \ell_{\ell_{k}}^{-1} [f_{\ell_{k}}(\mathcal{X}_{k}, M)]$ $\pi_{\mathcal{M}} = v[\langle \pi_{\mathcal{K}, \mathcal{C}}, 1 \cdot \nu_{\mathcal{C}}^{T} \rangle_{H}^{T}]$ $\pi_{\mathcal{K} \mathcal{C}} = \ell_{q}^{-1} [f_{q}(\mathcal{K}, \mathcal{C})]$ $M = (\mathcal{C}, \mathcal{K})$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{M}} \cdot \pi_{\mathcal{M}}$ $P_{\mathcal{X} M} = \odot_{k} P_{\mathcal{X}_{k} M}$ $P_{\mathcal{X} M} = \ell_{r}^{-1} [f_{r}(\mathcal{X}, M)]$ $\pi_{\mathcal{M}} = \mathbf{v} [\langle \pi_{\mathcal{K}, \mathcal{C}}, 1 \cdot \nu_{\mathcal{C}}^{T} \rangle_{\mathcal{H}}^{T}]$ $\pi_{\mathcal{K} \mathcal{C}} = \mathbf{Q}_{\mathcal{K}, \mathcal{C}} \cdot \nu_{\mathcal{C} \mathcal{C}}$ $\nu_{\mathcal{C} \mathcal{C}} = \odot_{a} \nu_{\mathcal{C}_{a} \mathcal{C}}$ $\nu_{\mathcal{C}_{a} \mathcal{C}} = \ell_{s_{a}}^{-1} [\tilde{\nu}(\mathcal{C}_{a}, \mathcal{C})]$ $M = (\mathcal{C}, \mathcal{K})$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{M}} \cdot \pi_{\mathcal{M}}$ $P_{\mathcal{X} \mathcal{M}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{M}}$ $P_{\mathcal{X}_{k} \mathcal{M}} = \ell_{k}^{-1} [f_{k}(\mathcal{X}_{k}, \mathcal{M})]$ $\pi_{\mathcal{M}} = v[\langle \pi_{\mathcal{K}, \mathcal{C}}, 1 \cdot \nu_{\mathcal{C}}^{T} \rangle_{\mathcal{H}}^{T}]$ $\pi_{\mathcal{K} \mathcal{C}} = \bigotimes_{a} \pi_{\mathcal{K} \mathcal{C}_{a}}$ $\pi_{\mathcal{K} \mathcal{C}_{a}} = \ell_{q}^{-1} [f_{q}(\mathcal{K}, \mathcal{C}_{a})]$ $M = (\mathcal{C}, \mathcal{K})$
	GLI on items on $\pi_{\mathcal{K} \mathcal{C}}$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{M}} \cdot \pi_{\mathcal{M}}$ $\pi_{\mathcal{M}} = v[\pi_{\mathcal{K}} \cdot \nu_{\mathcal{L}}^{T}]$ $P_{\mathcal{X} \mathcal{M}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{M}}$ $P_{\mathcal{X}_{k} \mathcal{M}} = \ell_{f_{k}}^{-1}[f_{f_{k}}(\mathcal{X}_{k}, \mathcal{M})]$ $\pi_{\mathcal{K}} = \odot_{i}\pi_{\mathcal{K}_{i}}$ $\mathcal{M} = (C, \mathcal{K})$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{M}} \cdot \pi_{\mathcal{M}}$ $P_{\mathcal{X} \mathcal{M}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{M}}$ $P_{\mathcal{X}_{k} \mathcal{M}} = \ell_{f_{k}}^{-1} [f_{f_{k}}(\mathcal{X}_{k}, \mathcal{M})]$ $\pi_{\mathcal{M}} = v[\langle \pi_{\mathcal{K}, \mathcal{C}}, 1 \cdot \nu_{\mathcal{C}}^{T} \rangle_{H}^{T}]$ $\pi_{\mathcal{K} \mathcal{C}} = \odot_{i} \pi_{\mathcal{K}_{i} \mathcal{C}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}} = \mathbf{Q}_{\mathcal{K}_{i}, \mathcal{C}}$ $\mathcal{M} = (\mathcal{C}, \mathcal{K})$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{M}} \cdot \pi_{\mathcal{M}}$ $P_{\mathcal{X} M} = \odot_k P_{\mathcal{X}_k M}$ $P_{\mathcal{X}_k M} = \ell_{i_k}^{-1} [f_{i_k}(\mathcal{X}_k, M)]$ $\pi_{\mathcal{M}} = \mathbf{v}[\langle \pi_{\mathcal{K}, \mathcal{C}}, 1 \cdot \nu_{\mathcal{C}}^{T} \rangle_{H}^{T}]$ $\pi_{\mathcal{K} \mathcal{C}} = \sigma_{i} \pi_{\mathcal{K}_i \mathcal{C}}$ $\pi_{\mathcal{K}_i \mathcal{C}} = \ell_{q_i}^{-1} [f_{q_i}(\mathcal{K}_i, \mathcal{C})]$ $M = (\mathcal{C}, \mathcal{K})$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{M}} \cdot \pi_{\mathcal{M}}$ $P_{\mathcal{X} M} = \odot_{k} P_{\mathcal{X}_{k} M}$ $P_{\mathcal{X}_{k} M} = \ell_{k}^{-1} [f_{k} (\mathcal{X}_{k}, M)]$ $\pi_{\mathcal{M}} = v[\langle \pi_{\mathcal{K}, \mathcal{C}}, 1 \cdot \nu_{\mathcal{C}}^{T} \rangle_{H}^{T}]$ $\pi_{\mathcal{K} \mathcal{C}} = \odot_{i} \pi_{\mathcal{K}_{i} \mathcal{C}}$ $\pi_{\mathcal{K}_{i} \mathcal{C}} = \mathbf{Q}_{\mathcal{K}_{i}, \mathcal{C}^{i}} \cdot \nu_{\mathcal{C}^{i} \mathcal{C}}$ $\nu_{\mathcal{C}^{i} \mathcal{C}} = (\sigma_{a} \nu_{\mathcal{C}_{a}^{i} \mathcal{C}})$ $\mu_{\mathcal{C}_{a}^{i} \mathcal{C}} = \ell_{a}^{-1} [\tilde{\nu}(\mathcal{C}_{a}^{i}, \mathcal{C})]$ $M = (\mathcal{C}, \mathcal{K})$	$P_{\mathcal{X}} = P_{\mathcal{X} \mathcal{M}} \cdot \pi_{\mathcal{M}}$ $P_{\mathcal{X} \mathcal{M}} = \odot_{k} P_{\mathcal{X}_{k} \mathcal{M}}$ $P_{\mathcal{X}_{k} \mathcal{M}} = \ell_{l_{k}}^{-1} [f_{l_{k}}(\mathcal{X}_{k}, \mathcal{M})]$ $\pi_{\mathcal{M}} = \mathbf{v} [\langle \pi_{\mathcal{K}, \mathcal{C}}, 1 \cdot \nu_{\mathcal{C}}^{T} \rangle_{\mathcal{H}}^{T}]$ $\pi_{\mathcal{K} \mathcal{C}} = \odot_{l} \pi_{\mathcal{K}_{l} \mathcal{C}}$ $\pi_{\mathcal{K}_{l} \mathcal{C}} = \bigotimes_{a} \pi_{\mathcal{K}_{l} \mathcal{C}_{a}^{I}}$ $\pi_{\mathcal{K}_{l} \mathcal{C}_{a}^{I}} = \ell_{q_{l}}^{-1} [f_{q_{l}}(\mathcal{K}_{l}, \mathcal{C}_{a}^{I})]$ $M = (\mathcal{C}, \mathcal{K})$